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ABSTRACT: A highly enantio- and diastereoselective syn-
thesis of indolo- and benzoquinolizidine compounds has been
developed through the formal aza-Diels−Alder reaction of
enones with cyclic imines. This transformation is catalyzed by
a new bifunctional primary aminothiourea that achieves
simultaneous activation of both the enone and imine reaction
components.

■ INTRODUCTION
Chiral indolo- and benzoquinolizidine frameworks reside within
a wide assortment of biologically active natural products and
synthetic pharmaceutical compounds (Figure 1).1,2 Among

laboratory approaches to access structurally and stereochemi-
cally complex members of this class of heterocycles, formal aza-
Diels−Alder (FADA) reactions between enones and cyclic
imines (Scheme 1) are particularly attractive from the
perspective of convergency, resulting in the concomitant
formation of a C−C and C−N bond and up to four new
stereocenters.3,4 A proline-based protocol for enantioselective
FADA reactions involving dihydro-β-carbolines has been
described by Itoh and co-workers,5 but the scope of this
method has proven to be very limited.6,7 We describe here the
discovery of a new primary aminothiourea catalyst with broad
scope for the highly enantio- and diastereoselective synthesis of
indolo- and benzoquinolizidine derivatives through the formal
[4 + 2] cycloaddition between enones and cyclic imines.
Our approach to catalysis of the FADA reaction was

premised on the possibility of a cooperative mechanism, with
specific acid activation of the imine combined with activation of

the enone as the corresponding dienamine (Scheme 1). Ureas
and thioureas have demonstrated broad utility as hydrogen-
bond donor catalysts for additions to imines, inducing
electrophile activation either by direct binding or indirectly
by means of anion binding.8,9 In addition, several studies have
highlighted the utility of primary amines as enamine precursors
in transformations that involve ketone and hindered aldehyde
substrates.10 On the basis of these precedents, we undertook an
investigation of primary amine-containing hydrogen-bond
donors as bifunctional catalysts for the enantioselective FADA
reaction of enones and cyclic imines.

■ RESULTS AND DISCUSSION
A series of thioureas of the general structure 1 was evaluated for
catalysis of the FADA reaction between dihydro-β-carboline
2a11 and commercially available enone 3a (Table 1). Systematic
variation of the amide, amino acid, and diamine components of
the catalyst (e.g., entries 1−6)12 led to the determination that
the primary amino functional group was essential for catalysis
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Figure 1. Selected examples of bioactive indolo- and benzoquinoli-
zidine derivatives.

Scheme 1. FADA Reactions of Enones and Cyclic Imines
and Approach to Catalysis
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(entries 5 and 6) and that the steric properties of the amide
exerted a significant influence on stereoselectivity. Ultimately,
tertiary amide derivative 1c was shown to be optimal for the
generation of the exo cycloadduct 4aa with respect to both
diastereo- and enantioselectivity. A crucial role of a weak
Brønsted acid additive was also established: In the absence of
catalytic AcOH, very low turnover of the thiourea catalyst was
observed, although the enantioselectivity remained high (entry
7). A beneficial role of added AcOH has been observed in other
primary aminothiourea-catalyzed reactions10 and may be
ascribed to acceleration of the condensation and/or hydrolysis
steps integral to the enamine catalysis cycle. Additionally,
thiourea-assisted, specific acid activation of the imine (Scheme
1, X = OAc) represents another potential role of the acid
cocatalyst.13 Consistent with this hypothesis, the identity of the
carboxylic acid was found to have a measurable influence on the
enantioselectivity of the transformation (AcOH vs BzOH,
entries 3 and 8). Finally, improved product yields were
obtained using an excess of enone (Table 1, entries 3 vs 9),
as this served to curtail the effects of product inhibition.14

Under the optimized conditions outlined above, primary
aminothiourea 1c displays broad scope in FADA reactions
between dihydro-β-carboline derivatives and conjugated enones
[Table 2; see Supporting Information (SI) for additional
substrates]. High yields of highly enantioenriched adducts were
obtained with enones bearing β-aryl and heteroaryl substituents
(entries 1−9) and linear and branched alkyl substituents
(entries 10−13) as well as cyclic enones (entry 14). Longer

reaction times and/or higher catalyst loadings were required for
α-substituted (entries 13, 14) and electron-rich β-aryl
substituted enones (entry 4), presumably due to slower
imine/enamine formation with the aminothiourea catalyst.
The scope of the aminothiourea methodology with respect to

the imine component includes both electron-deficient and -rich
dihydro-β-carbolines (Table 2, entries 16 and 17). Substituted
3,4-dihydroisoquinolines (6) also underwent FADA reactions
with enone 3j in the presence of catalyst 1c to generate chiral
benzoquinolizidine frameworks in high yield, dr, and ee,
although higher catalyst loadings were required for this imine
substrate class (Table 3).15

Examination of the data in Table 2 reveals a trend where
FADA adducts bearing electron-rich C4 substituents are
obtained in relatively low diastereomeric ratios (e.g., entries

Table 1. Catalyst Optimization Studiesa

entry catalyst t (h) yieldb (%) drc (4aa:5aa) eed (%) (4aa/5aa)

1 1a 72 67 2.1:1 88/95
2 1b 52 75 3.2:1 88/95
3 1c 60 89 9.4:1 99/97
4 1d 48 77 3.7:1 94/98
5 1e 72 0 − −
6 1f 60 0 − −
7e 1c 60 6 5.6:1f 94/90
8g 1c 60 92 5.6:1 97/96
9h 1c 72 68 9.2:1 99/99

aUnless noted otherwise, reactions were conducted using 2a (0.1
mmol, 1.0 equiv), 3a (2.0 equiv), 1a−f (5.0 mol %), and AcOH (5.0
mol %) at 4 °C in anhydrous toluene ([2a] = 0.1 M). The notation
4xy refers to the FADA adduct derived from imine 2x and enone 3y.
bIsolated yield of diastereomerically pure 4aa following purification by
flash column chromatography. cDetermined by HPLC analysis of the
unpurified reaction mixture. dDetermined by HPLC analysis of pure,
isolated product diastereomers using commercial chiral columns.
eReaction carried out with 0 equiv of AcOH. fCalculated based on the
isolated yields of each diastereomer. gReaction carried out with 5.0
mol % BzOH instead of AcOH. hReaction carried out with 1.2 equiv
of 3a.

Table 2. Primary Aminothiourea-Catalyzed FADA Reactions
of Enones and Substituted 9-Tosyl-3,4-dihydro-β-carboline
Iminesa

entry imine enone t (h) yield of 4b (%) drc (4:5) eed (%) (4/5)

1 2a 3a 60 90 9.4:1 99/97
2 2a 3b 48 95 18:1 99/n.d.
3 2a 3c 72 87 7.6:1 99/99
4 2a 3d 312 57 1.3:1 99/99
5e 2a 3e 48 91 10:1 99/n.d.
6 2a 3f 30 92 13:1 98/n.d.
7 2a 3g 48 96 >19:1 98/n.d.
8 2a 3h 48 84 4.2:1 96/99
9 2a 3i 48 81 4.5:1 99/99
10 2a 3j 55 91 >19:1 98/n.d.
11 2a 3k 60 >99 >19:1 98/n.d.
12 2a 3l 192 90 >19:1 97/n.d.
13f 2a 3m 192 88 7.0:1 95/92
14g 2a 3n 48 87 >19:1 99/n.d.
15h 2a 3o 408 50 − 92/n.d.
16 2b 3j 48 88 >19:1 97/n.d.
17 2c 3j 48 87 >19:1 97/n.d.

aUnless noted otherwise, reactions were conducted using 2 (0.3 mmol,
1.0 equiv), 3 (2.0 equiv), 1c (5.0 mol %), and AcOH (5.0 mol %) at 4
°C in anhydrous toluene ([2]0 = 0.1 M). bYields of isolated
diastereomerically pure product following flash column chromatog-
raphy on silica gel. cDetermined by chiral HPLC analysis of the
unpurified reaction mixture. dDetermined by HPLC analysis of pure,
isolated product diastereomers using commercial chiral columns (see
SI). eAbsolute configurations of 4ae and 5ae were determined via X-
ray crystallography. The stereochemistry of all other adducts is
assigned by analogy. f1c (20 mol %), AcOH (20 mol %), 23 °C. g1c
(10 mol %), AcOH (10 mol %), 23 °C. hIncomplete conversion after
408 h.
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4, 8, and 9). In order to determine whether diastereoselectivity
is under kinetic or thermodynamic control, diastereomerically
pure adduct 4ad was subjected to the reaction conditions in the
presence of 1 equiv of enone 3d for 4 d.16 A product ratio of
6.3:1 (4ad:5ad) was determined.17,18 However, a crossover
experiment conducted between diastereomerically pure adduct
4aa and enone 3j yielded none of the possible crossover
product 4aj, indicating that the overall reaction is not
reversible.19 Instead, the observed decrease in the product
diastereomeric ratio suggests that during the course of the
reaction, kinetic adducts 4 can undergo epimerization at C4 to
thermodynamic adducts 5,20 but that the C10 center is formed
irreversibly.
Based on these observations, we outline a catalytic cycle for

the primary aminothiourea-catalyzed FADA reaction (Scheme
2).21 In this proposal, activation of the enone is achieved by the
catalyst through formation of the corresponding covalently
bound dienamine, and simultaneously the imine is activated as
a thiourea-bound iminium ion (A). Cyclization to intermediate
C can then proceed by means of an irreversible concerted [4 +
2] cycloaddition or by a stepwise Mannich-conjugate addition,
in which the C10 center is installed irreversibly. Tautomeriza-
tion of enamine C to iminium ion D, followed by hydrolysis
releases the FADA adduct and regenerates the aminothiourea
catalyst. The diminished diastereomeric ratios of FADA adducts
containing electron-rich C4 substituents can be ascribed to
either or both of the mechanisms outlined in Scheme 3. An off-
cycle retro-Mannich reaction of intermediate D or a potentially
on-cycle β-elimination from tautomeric intermediate C would
generate iminium ions E and B, respectively, which would both
be stabilized by electron-rich C4 substituents. Ring closure
from either of these iminium ion intermediates could result in
the formation of thermodynamic FADA adducts via inter-
mediates C′ or D′.

■ CONCLUSION
In conclusion, we have developed a primary aminothiourea-
catalyzed FADA reaction of enones and cyclic imines for the

enantioselective synthesis of a variety of stereochemically
complex indolo- and benzoquinolizidine building blocks. The
hydrogen-bond donor and primary amine are essential
functional components of the optimal catalyst, allowing for
dual activation of the reaction components. The application of
this catalyst to the synthesis of alkaloid natural products is the
subject of ongoing research.22

■ ASSOCIATED CONTENT
*S Supporting Information
Catalyst optimization studies, complete experimental proce-
dures, and characterization data for substrates and FADA
products, ee and dr determination, and crystallographic data for
compounds 4ae and 5ae. This material is available free of
charge via the Internet at http://pubs.acs.org.
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